Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure.
نویسندگان
چکیده
During auditory fear conditioning, it is well established that lateral amygdala (LA) neurons potentiate their response to the tone conditioned stimulus, and that this potentiation is required for conditioned fear behavior. Conditioned tone responses in LA, however, last only a few hundred milliseconds and cannot be responsible for sustained fear responses to a tone lasting tens of seconds. Recent evidence from inactivation and stimulation studies suggests that the prelimbic (PL) prefrontal cortex is necessary for expression of learned fears, but the timing of PL tone responses and correlations with fear behavior have not been studied. Using multichannel unit recording techniques in behaving rats, we observed sustained conditioned tone responses in PL that were correlated with freezing behavior on a second-to-second basis during the presentation of a 30 s tone. PL tone responses were also correlated with conditioned freezing across different experimental phases (habituation, conditioning, extinction). Moreover, the persistence of PL responses after extinction training was associated with failure to express extinction memory. Together with previous inactivation findings, the present results suggest that PL transforms transient amygdala inputs to a sustained output that drives conditioned fear responses and gates the expression of extinction. Given the relatively long latency of conditioned responses we observed in PL (approximately 100 ms after tone onset), we propose that PL integrates inputs from the amygdala, hippocampus, and other cortical sources to regulate the expression of fear memories.
منابع مشابه
Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear.
Recent studies using lesion, infusion, and unit-recording techniques suggest that the infralimbic (IL) subregion of medial prefrontal cortex (mPFC) is necessary for the inhibition of conditioned fear following extinction. Brief microstimulation of IL paired with conditioned tones, designed to mimic neuronal tone responses, reduces the expression of conditioned fear to the tone. In the present s...
متن کاملFear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons.
Extinction of conditioned fear is an active learning process involving inhibition of fear expression. It has been proposed that fear extinction potentiates neurons in the infralimbic (IL) prefrontal cortex, but the cellular mechanisms underlying this potentiation remain unknown. It is also not known whether this potentiation occurs locally in IL neurons as opposed to IL afferents. To determine ...
متن کاملFear renewal preferentially activates ventral hippocampal neurons projecting to both amygdala and prefrontal cortex in rats
Anxiety, trauma and stress-related disorders are often characterized by a loss of context-appropriate emotional responding. The contextual retrieval of emotional memory involves hippocampal projections to the medial prefrontal cortex and amygdala; however the relative contribution of these projections is unclear. To address this question, we characterized retrieval-induced Fos expression in ven...
متن کاملChronic stress alters neural activity in medial prefrontal cortex during retrieval of extinction.
Chronic restraint stress produces morphological changes in medial prefrontal cortex and disrupts a prefrontally mediated behavior, retrieval of extinction. To assess potential physiological correlates of these alterations, we compared neural activity in infralimbic and prelimbic cortex of unstressed versus stressed rats during fear conditioning and extinction. After implantation of microwire bu...
متن کاملPrelimbic prefrontal neurons drive fear expression: a clue for extinction--reconsolidation interactions.
Learning associations between cues in the environment gives organisms the ability to predict impending danger. The last few decades of research have established that these stimulus– danger or fear associations are formed in the amygdala (LeDoux, 2000). This type of learning is modeled in the laboratory by presenting a neutral sensory stimulus (such as a tone) with an aversive stimulus (such as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 26 شماره
صفحات -
تاریخ انتشار 2009